30 research outputs found

    Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume Using Machine Learning Algorithms–Case Study of Evergreen Conifer Planted Forests in Japan

    Get PDF
    The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10–25 m resolution), TLS (3.4 mm resolution) and UAS (2.3–4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R2 up to 0.665 and RMSE up to 66.87 m3/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R2 up to 0.519 and RMSE up to 80.12 m3/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry

    Fission yeast Srr1 and Skb1 promote isochromosome formation at the centromere

    Get PDF
    Rad51 maintains genome integrity, whereas Rad52 causes non-canonical homologous recombination leading to gross chromosomal rearrangements (GCRs). Here we find that fission yeast Srr1/Ber1 and Skb1/PRMT5 promote GCRs at centromeres. Genetic and physical analyses show that srr1 and skb1 mutations reduce isochromosome formation mediated by centromere inverted repeats. srr1 increases DNA damage sensitivity in rad51 cells but does not abolish checkpoint response, suggesting that Srr1 promotes Rad51-independent DNA repair. srr1 and rad52 additively, while skb1 and rad52 epistatically reduce GCRs. Unlike srr1 or rad52, skb1 does not increase damage sensitivity. Skb1 regulates cell morphology and cell cycle with Slf1 and Pom1, respectively, but neither Slf1 nor Pom1 causes GCRs. Mutating conserved residues in the arginine methyltransferase domain of Skb1 greatly reduces GCRs. These results suggest that, through arginine methylation, Skb1 forms aberrant DNA structures leading to Rad52-dependent GCRs. This study has uncovered roles for Srr1 and Skb1 in GCRs at centromeres.Mongia P., Toyofuku N., Pan Z., et al. Fission yeast Srr1 and Skb1 promote isochromosome formation at the centromere. Communications Biology 6, 551 (2023); https://doi.org/10.1038/s42003-023-04925-9

    Findings from recent studies by the Japan Aerospace Exploration Agency examining musculoskeletal atrophy in space and on Earth

    Get PDF
    The musculoskeletal system provides the body with correct posture, support, stability, and mobility. It is composed of the bones, muscles, cartilage, tendons, ligaments, joints, and other connective tissues. Without effective countermeasures, prolonged spaceflight under microgravity results in marked muscle and bone atrophy. The molecular and physiological mechanisms of this atrophy under unloaded conditions are gradually being revealed through spaceflight experiments conducted by the Japan Aerospace Exploration Agency using a variety of model organisms, including both aquatic and terrestrial animals, and terrestrial experiments conducted under the Living in Space project of the Japan Ministry of Education, Culture, Sports, Science, and Technology. Increasing our knowledge in this field will lead not only to an understanding of how to prevent muscle and bone atrophy in humans undergoing long-term space voyages but also to an understanding of countermeasures against age-related locomotive syndrome in the elderly

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Improving the 3D model accuracy with a post-processing kinematic (PPK) method for UAS surveys

    No full text
    Numerous studies utilizing unmanned aerial systems (UASs) have been conducted using the structure from motion technique to study regions/objects of interest for various geoscience-related studies. To provide higher model accuracy, ground control points (GCPs) are typically used to aid the image analysis. However, in cases where GCPs are difficult to set or see, such an approach cannot be used. This paper focused on a method for improving a 3D model during the SfM process without the aid of GCPs by utilizing small and lightweight global navigation satellite system (GNSS) devices attached to a multirotor UAS, and an automatic shutter release system was developed for recording the precise time stamp for synchronization. The proposed method was verified as a possible alternative to conventional GCP methods, especially in locations where placing multiple GCPs is difficult or in regions where real-time kinematic (RTK) data are limited due to various limitations (e.g. legal constraints)

    Total thoracoscopic lung segmentectomy of anterior basal segment of the right lower lobe (RS8) for NSCLC stage IA (case report)

    No full text
    Abstract A 69-year-old woman with a pulmonary nodule in anterior basal segment of the right lower lobe (RS8) was referred to our department. The diameter of the tumor was 12 mm, and it had increased over a few months. First, video-assisted thoracoscopic lung surgery (VATS) biopsy of the pulmonary nodule was carried out. Frozen section examination of this nodule confirmed the diagnosis of bronchioloalveolar carcinoma (BAC). Segmentectomy of RS8 with lower mediastinal node dissection (ND2a-1) was performed. The intersegmental plane was identified using the intersegmental veins as landmarks and the demarcation between the resected (inflated) and preserved (collapsed) lungs. Electrocautery at 70 watts was used to divide the intersegmental plane. A vessel sealing system was used to seal and cut the pulmonary arteries. Postoperative histopathological examination revealed that the tumor was T1aN0M0 BAC, and the minimal distance between the surgical margin and the tumor edge was 15 mm. The patient was discharged from hospital on postoperative day 5 without any complications.</p

    Experimental Study on W-Band (75 - 110 GHz) Oversized Surface Wave Oscillator Driven by Weakly Relativistic Electron Beams

    Get PDF
    A W-band (75 - 110 GHz) oversized surface wave oscillator driven by weakly relativistic electron beams with energy in the range of 10 - 80 keV is studied. Rectangular corrugations are used as slow-wave structures (SWS) having surface waves with an upper cutoff frequency of approximately 100 GHz (W-band). Uniformly distributed annular electron beams are generated by a disk-type cold cathode and then are injected into the W-band oscillator. A longer SWS length causes the oscillator to function in both backward wave oscillator (BWO) and travelling wave tube (TWT) operations, and no meaningful oscillation occurs at the π-point or the Bragg condition. When the SWS length is short enough, oscillation occurs in all regions: BWO, π-point and TWT. The operations of the oscillator are strongly affected by the structure length. The maximum radiation power is estimated to be approximately 20 kW with the figure of merit of about 2 × 102 MW.GHz2
    corecore